Dark Matter-Neutrino Interactions: Implications of Solving Small Scale Structure Problems

Bridget Bertoni

Work in progress with Ann Nelson, David McKeen, and Seyda Ipek

Fermilab Theory Seminar

Dec. 4, 2014

↑CDM: Very Successful

CDM: Success on Large Scales (≥ few Mpc)

CDM: Failure on Small Scales (≤ few Mpc)

- Missing satellites
- · Too big to fail

· Core vs. cusp

$$\rho_{NFW}(r) = \frac{\rho_0}{(r/r_c)(1 + r/r_c)^2}$$

$$\rho_{ISO}(r) = \frac{\rho_0'}{1 + (r/r_c')^2}$$

small $r: \rho \propto r^{\alpha}$

Possible Solutions

- Better simulations (baryonic physics)
- Warm dark matter
- Self-interacting dark matter
- Neutrino-interacting dark matter

Possible Solutions

- Better simulations (baryonic physics)
- Warm dark matter
- Self-interacting dark matter
- Neutrino-interacting dark matter

If neutrino-interacting dark matter is the answer, what does the model look like and what are the implications?

Outline

- Small Scale Structure (Solving the MSP)
- Model Building
- Constraints
- Predictions
- Conclusions

Small Scale Structure

Basic Ideas

- small scale structure forms first \implies to erase small scale structure, need $M_{\rm cutoff}$ (smallest mass object formed)
- two scales for washing out structure, one before and one after DM decouples
- relevant decoupling is kinetic not chemical

Chemical Decoupling at T_{fo}

- DM annihilation and creation stops
- co-moving number density of DM becomes constant

Kinetic Decoupling at $T_{\rm d}$

- DM stops interacting with other particles
- after $T_{\rm d}$ DM free-streams
- larger coupling \Longrightarrow smaller $T_{\rm d}$

Small Scale Structure $T > T_{\rm d}$

Acoustic Oscillations

For coupled DM, small scale DM density perturbations will oscillate with the radiation fluid, washing out structure

 \Longrightarrow damped oscillations on length scales smaller than the horizon size at decoupling, $\left(\frac{1}{H_{\rm d}}\right)$

$$M_{\rm ao} = \rho_{\chi}(T_{\rm d}) \tfrac{4\pi}{3} \left(\tfrac{1}{H_{\rm d}}\right)^3 = 2 \times 10^8 M_{\odot} \, \left(\tfrac{g_{\rm eff}(T_{\rm d})}{3.36}\right)^{-1/2} \left(\tfrac{T_{\rm d}}{\rm keV}\right)^{-3}$$

Small Scale Structure $T < T_{\rm d}$

Free Streaming

- 1. Gravitational potential set up by radiation has decayed
- 2. DM "warmer" due to neutrino interactions

 \implies damping on length scales smaller than the distance that DM travels after kinetic decoupling, $\pi a_{\rm eq} \int_{t_{\rm d}}^{t_{\rm eq}} dt (v_{\rm phys}/a(t))$

$$\begin{split} M_{\rm fs} &= 7 \times 10^5 M_{\odot} \, \left(\frac{g_{\rm eff}(T_{\rm d})}{3.36} \right)^{-1/2} \left(\frac{m_{\chi}}{10 \, {\rm MeV}} \right)^{-3/2} \left(\frac{T_{\rm d}}{\rm keV} \right)^{-3/2} \\ &\times \left\{ 1 + \ln \left[\left(\frac{g_{\rm eff}(T_{\rm d})}{3.36} \right) \left(\frac{T_{\rm d}}{\rm keV} \right) \right] / 6.0 \right\}^3 \end{split}$$

Observations of smallest halos

- DM halos around satellite galaxies $\implies M_{\rm halo} \sim 10^9 M_{\odot}$ (Strigari et al. 0808.3772)
- Lyman- α observations $\implies M_{\rm halo} \sim 3 \times 10^8 M_{\odot}$ (Viel et al. 1306.2314)
- Gravitational lensing $\implies M_{\rm halo} \sim 10^8 M_{\odot}$ (Vegetti et al. 1201.3643 & 1405.3666)

We will consider $M_{\rm cutoff} \sim 10^7 - 10^9 M_{\odot}$ to solve the MSP

- · Acoustic oscillations set the cutoff scale
- Need $T_{\rm d} \sim {\rm keV}$ and large $\chi \nu$ coupling to achieve this

Model Building

Example Model

- Consider a gauge singlet, Weyl DM field χ
- Could couple to neutrinos through the operator $\ell H \chi$, but this would lead to DM decay
- Introduce a dark U(1), a scalar ϕ , and the operator $\frac{1}{\Lambda}\ell H\chi\phi$
- Λ could be due to a sterile neutrino Weyl field N

$$-\mathcal{L} \supset MNN + \lambda NH\ell + y\phi N\chi + \text{h.c.}$$

• See-saw Majorana masses: $m_{\hat{
u}} pprox rac{\lambda^2 v^2}{M}$ and $M_{\hat{N}} pprox M$

Example Model (Cont.)

This gives
$$\sigma_{\chi\nu} pprox rac{g^4 T^2}{8\pi m_\phi^4} \; , \; \; g pprox y \sqrt{m_{\hat{
u}}/M_{\hat{N}}}$$

Solving for T_d :

$$T_{\rm d} = 1 \ {\rm keV} \ \left(\frac{g_{\rm eff}(T_{\rm d})}{3.36} \right)^{1/8} \left(\frac{m_\chi}{10 \ {\rm MeV}} \right)^{1/4} \left(\frac{m_\phi}{20 \ {\rm MeV}} \right) \left(\frac{|g|}{0.3} \right)^{-1}$$

So solving the MSP $\implies g \gtrsim 0.1 \implies M_{\hat{N}} \lesssim 10 \text{ eV}$

Example Model (Cont.)

This gives
$$\sigma_{\chi\nu} pprox rac{g^4 T^2}{8\pi m_\phi^4} \; , \; \; g pprox y \sqrt{m_{\hat{
u}}/M_{\hat{N}}}$$

Solving for T_d :

$$T_{\rm d} = 1 \ {\rm keV} \ \left(\frac{g_{\rm eff}(T_{\rm d})}{3.36} \right)^{1/8} \left(\frac{m_\chi}{10 \ {\rm MeV}} \right)^{1/4} \left(\frac{m_\phi}{20 \ {\rm MeV}} \right) \left(\frac{|g|}{0.3} \right)^{-1}$$

So solving the MSP $\implies g \gtrsim 0.1 \implies M_{\hat{N}} \lesssim 10 \text{ eV}$

Viable Model

- Abandon simple neutrino masses (no LNV in the DM/N sector)
- Add two sterile Weyl fields: N₁ and N₂ (with opposite lepton number)

$$-\mathcal{L} \supset m_{ij}\nu_i\nu_j + MN_1N_2 + \lambda_iN_1H\ell_i + y_1\phi^*N_1\chi + y_2\phi N_2\chi + \text{h.c.}$$

Mass matrix:
$$\begin{pmatrix} m_{ij} & \lambda_j v & 0 \\ \lambda_i v & 0 & M \\ 0 & M & 0 \end{pmatrix}$$

- Majorana masses $m_{\hat{\nu}_i} \approx m_i$ and Dirac mass $M_{\hat{N}} \approx M$
- Still have $g_i pprox rac{\lambda_i v}{M} y_2$ but it's no longer related to $m_{\hat{
 u}_i}$

Viable Model (Cont.)

• Mass basis: 3 light Majorana neutrinos $\hat{\nu}_i$, heavy ($\sim 100 \text{ MeV}$)
Dirac neutrino \hat{N}

$$\hat{N} = \left(\begin{array}{c} \hat{\nu}_4 \\ N_1^* \end{array}\right)$$

• In principle, $\hat{\nu}_4$ can consist of any arbitrary combination of sterile (N_2) and active flavors

$$\hat{\nu}_4 = U_{\ell 4}^* \nu_\ell$$
 where U is the 4×4 mixing matrix

 $\chi \to N_2 \to \hat{\nu}_4 \to \nu_e, \ \nu_\mu, \ \nu_\tau, \ \text{ so want } |U_{\ell 4}| \text{ large for large coupling}$

Constraints

Electroweak Constraints

 U_{e4} and $U_{\mu4}$ are strongly constrained from line searches in muon and meson decays and electroweak precision measurements

The heavy $\hat{\nu}_4$ part of ν_μ or ν_e alters decay rates ($\hat{\nu}_4$ decays invisibly)

$$|U_{e4}|^2, |U_{\mu 4}|^2 \lesssim 10^{-4} - 10^{-5}$$

Gninenko, 1009.5536

need strong coupling to solve MSP \Rightarrow only consider $\hat{\nu}_4$ part of ν_{τ}

τ Decays

- τ decay rates and the energy distribution of the decay products are altered
- Only consider adding $\hat{\nu}_4$ to $\nu_{\tau} \implies$ one new parameter θ_{τ}

•
$$\nu_{\tau} = c_{\theta_{\tau}} \sum_{i=1}^{3} V_{\tau i} \hat{\nu}_{i} + s_{\theta_{\tau}} \hat{\nu}_{4}$$
, $|U_{\tau 4}|^{2} = s_{\theta_{\tau}}^{2}$

green: $\tau \to \nu 3\pi$

blue: $\tau \to \ell \nu \bar{\nu}$

--- 68% C.L. — 95% C.L.

Neutrino Oscillation Experiments

- Can measure 3-neutrino mixing parameters independently from sterile parameters
- SuperK (no matter effects) measures $\mu \rightarrow$ sterile: $\theta_{\tau} \lesssim 0.42$ (limited by data)
- Solar NCs: $\theta_{\tau} \lesssim 0.6$ (poorly understood Φ_B)

 Presence of sterile neutrino alters oscillations in matter over a distance scale $\sim 4000 \text{ km}$ —LBNF (1300 km), NO ν A (810 km)

Supernova 1987A

• Usually light DM $(m_\chi \lesssim 100 \text{ MeV})$ is constrained by supernova energy loss

- Neutrino-interacting DM needs $m_\chi = \mathcal{O}(10)$ MeV to solve the MSP
- Similar to Fayet et al., hep-ph/0602169: $m_\chi \gtrsim 10~{\rm MeV}$

We plan to study the effects on neutrino spectra in detail in future work

Predictions

Supernova Neutrino Observations

- Supernova release most of their energy in $\sim 10^{58}$ neutrinos
- Neutrinos can resonantly scatter off DM and out of the line of sight of our detectors

Model this using standard neutrino oscillations plus a decay term

$$H + i\frac{\Gamma}{2}$$

• Neutrino oscillations \implies each $\hat{\nu}_i$ has its own decay probability

$$\approx |U_{Ni}|^2 \int_{\text{l.o.s.}} dx \, n_{\chi}(x) \sigma_{\chi N}$$

Supernova Neutrinos (SN 1987A)

Ignoring changes in neutrino spectra for now...

$$\nu_e$$
 fraction = $\frac{\nu_e}{\nu_e + \nu_\mu + \nu_\tau}$ $E_{\rm res} = \frac{m_\phi^2 - m_\chi^2}{2m_\chi}$

More Small Scale Structure Problems

The cusp-core and the too big to fail problems could be alleviated by "feedback" due to supernova or reionized gas

Pontzen & Governato, 1402.1764

- In simulations $\sim 0.1 1\%$ of SN energy gets transferred to DM
- Neutrino-interacting DM could get supernova energy directly

Using DM-neutrino scattering, $\approx 0.1\%$ of SN energy will be transferred to DM over 1 kpc

Conclusions

- Gravity-only simulations of ΛCDM fail on sub-galaxy scales
- Neutrino-interacting DM is viable and could alleviate these small scale structure problems
- This implies observable features in astrophysical neutrino spectra and motivates studying τ decays, neutrino oscillations, and supernova neutrinos

Backup Slides

Kinetic Decoupling

Estimate $T_{\rm d}$ for χ - ν scattering:

• non-relativistic DM and relativistic ν s

$$\implies \Delta p \sim p_{\nu} \sim T$$

• change in p_{χ} after N collisions is $\mathcal{O}(1)$ when

$$\Delta p_{\rm tot} \sim \sqrt{N}T = p_{\chi} \sim \sqrt{m_{\chi}T}$$
$$\implies N \sim m_{\chi}/T \gg 1$$

Kinetic decoupling occurs when

$$N\tau = \frac{m_{\chi}}{T} \left(n_{\nu} \sigma_{\chi \nu} v \right)^{-1} \sim H^{-1}$$

What about future supernovae?

- Rate of core-collapse supernova is a few per century in a Milky Way sized galaxy
- Most likely distance ~ 10 kpc
- Current detectors will see $\sim 10^2 10^4$ events at this distance

For a supernova ~ 10 kpc away, with $M_{\rm cutoff} = 10^9 M_{\odot}$, this neutrino-DM resonance is observable.